File: report.doc

25th May 1999.

File: report.doc

25th May 1999.

[image: image3.png]$©)

Report for Erik's DB_Proj project.

Summary:

This (evolutive) paper presents the job of Erik's database project of arriving at the extension of the existing database for the SPS RF Control System, a more user friendly environment for data entry / modification / visualisation and documention and finally a study and possible implementation of migrating the file-based archive of the Control System to an ORACLE database based one.

We indicate the successive steps we followed and the tools used in them; how the work was accomplished.

Reference is provided to documents as well as people who advised us.

Table of contents

31.
Erik's Database Project aims

2.
The ‘plan de campagne’
3
3.
The SPS RF Control System
4
3.1.
Current work environment
4
3.2.
Material upgrade
5
3.3.
Work on mirror material
6
3.3.1.
The database
6
3.3.2.
The forms and SQL scripts
7
3.4.
Upgrading the forms
8
3.5.
Retouching the forms
9
3.6.
Adding some functionality to the existing system
9
3.6.1.
The database
9
3.6.2.
The forms
9
3.6.3.
The MMI-SQL scripts
10
4.
The Executer Database Management System
11
4.1.
Specification
11
4.1.1.
Global system files
11
4.1.2.
Table object type files
13
4.1.3.
Data object type files
14
4.1.4.
Routine objects type files
14
4.2.
Software layout
18
4.3.
Object model design
19
4.4.
Relational database model design
20
4.5.
Executer Database Management System use
22
5.
Epilogue
23
6.
References
23
6.1.
People
23
6.2.
Manuals and tutorials
23
6.3.
Settings screen captures
24
6.4.
RF Executer configuration files
28

1. Erik's Database Project aims

Note:
The following assumes a basic knowledge of SPS RF Control System terminology. A short description of the SPS RF Control System can be found in <PATH>/Pr990420.txt.

This project has the following aims:

· Extending the existing database for the SPS RF Control System such that it supports a means of user imposed ordering at the GUI level of targets and sub-functionality nodes. Currently this is done automatically (alphabetically) and thus most of the time not as the control system designer would like to have it. It involves a modification of the data entry forms as well.

· Extending the existing database for provision of ‘exclusively’ selecting targets for the SPS RF Control application (MMI). This would give the MMI at the target selection synoptic the possibility to select n-outof-all targets; the n+1 selected target would de-select the first selected one, sort of a ‘First selected Target, First deselected Target’ mode. The value of n could have been defined in the database as 0, 1, 2, 3, ---, (max. number of targets – 1) of this node. If defined as n=0, which could be the default value, it would mean to be equivalent to the current situation where targets are selected in an inclusive way (1 up to all targets selected), such as to remain compatible with the current existing practise (code).

· Extending the existing database to support maintenance of static data for the Executer process. Currently this is completely non-existent. It involves database design, creation of data entry forms and sql extraction scripts for the creation of configuration files required by the Executer process.

· Provision of a new database management system, capable of delivering documentation of the database construction and data entry.

· Study of the possibility to use ORACLE for the archiving of “settings” from the SPS RF Control System. This part is a separate entity. We hope that it will solve the problem of “sub-cycle” setting data archiving. Currently only archiving (in files and our own format) on basis of complete system settings can be achieved. For use of the SPS RF Control System in the LHC era this is too rigid.

2. The ‘plan de campagne’

Here we describe how we shall proceed in order to arrive at the implementation goal:

· First we shall create a copy of the existing database in a development environment. This to preserve the operational one from any mistakes and alteration made during the upgrade and development phases.

· We shall upgrade the existing ORACLE forms and sql scripts to the latest standard available at CERN. This will allow us to have modern, CERN standard, tools available for the development part of the job, and, hopefully, provide us with the much wanted database documentation creating tool.

· At this point we shall create a complete set of configuration files with the upgraded, but non altered, forms and scripts in the new version environment and check their correctness on the development SPS RF Control System.

· Extension of the existing database with the “ordering” requirement and adaptation of the data entry forms. It will probably involve redesigning of the forms.

· Another testing phase to make sure that everything still works.

· Design of the Executer database and its associated ORACLE forms for data entry and sql scripts for the creation of the Executer configuration files.

· Testing the Executer configuration files created by our new system.

· Studying (and possibly the implementation of) the possibility of migrating the SPS RF Control System archiving system from a file-archive based to an ORACLE database based system with data storage / retrieval on sub-cycle basis.

· …Testing… (hopefully... :-).

3. The SPS RF Control System

3.1. Current work environment

Note: A description of creation of the SPS RF Control System configuration files can be found in <PATH>/Mmi_grap.txt.

Before presenting the different points we have to work on, let's try to sum up the tasks which have to be done by a user before he can use the SPS RF Control System:

· first the user initializes some data in the accdb database. For this he makes a telnet session on the axldb host (DEC VMS computer), with the spsrf account. Then he goes into the FORMS sub-directory, and launches the software sqlforms30:

· telnet axldb

· login: spsrf / password: …

· down FORMS

· sqlforms30

Sqlforms30 is the “environment” that “executes” the various data entry “forms”. The form “graph” is the entry point to all forms for interactively entering all data into the SPS RF Control System database.

· secondly the user launches the sqlplus environment, in the sub-directory FLAT_TABLES of the spsrf account. At the command line of this software an sql script, one_system_tables, with as parameter the “root” node name of the required SPS RF Control System is executed:

· down FLAT_TABLES

· sqlplus

· login: slrfs / password: …

· start one_system_tables supra_352_low_level

Starting this sql script will thus create, from the initialized database of the first step, and uniquely for the requested RF System, a set of tables in the accdb. This set will be used as a basis for the creation of the configuration flat files.

· finally, in the various ~/xxx_FILES subdirectories, the user executes either one or two sql scripts, with or without parameters, in the sqlplus environment for the production of the required configuration files. E.g. in ~/MMI_FILES is executed:

· down MMI_FILES

· sqlplus

· login: slrfs / password: …

· start one_system_files supra_352_low_level

· start all_systems_file

In this example executing these sql scripts will produce configuration files, like e.g. the SUPRA_352_LOW_LEVEL.CHILD one. These static files will be used for the configuration in run-time by some executables, in this case for the GUI (or MMI) of the SPS RF Control System, the bulles.exec software.

Below is a summary of this system.

[image: image4.wmf]
3.2. Material upgrade

As we have seen in the previous part, entering data into the database and producing from this the operational configuration files supposes:

· logging on the axldb host, by a telnet session. This host works with the DEC VMS operating system, which is quite unfamiliar in our current work situation.

· using some v3.0 character-mode ORACLE forms. Version 3.0 is out of date. Development and use in character mode via telnet is not simple (control sequences, special keys etc.).

· using some v3.0 sql scripts.

These three reasons explain the following steps of our work: creating a copy of the operational database for use as a testbed and then upgrading the forms and scripts from version 3.0 to 5.0. This upgrade enables us using them with the PC NICE network ORACLE database tools.

3.3. Work on mirror material

3.3.1. The database

In order not to disturb the operational database, we begin this work by making a copy of the accdb slrf tables to the devdb database:

· in order to be able to access to the different forms from the "graph_db" one, we begin by making a copy of the "FORM_APP" system table. This is done by launching an SQL script:

· menu MS-Windows "Database Management" ("Oracle basics" ("SQL Plus", the connection is made on slrfs@accdb
· create table user_form_app as select * from form_app;

· we ask Nilo ([P-Nilo]), our DB administrator, to create a new account on the devdb database, with the same login (slrfs) and password as the accdb one.

· we copy the structure (skeleton tables) and values from the accdb database to the devdb one, using the oracle-unix export and import facilities (see manual on [M-EXP/INP]) under NICE:

· menu MS-Windows "Start" ("Run…" ("command"

· [image: image5.wmf]> exp73

· > imp73

Please remark that importing a second time requires to first delete all the user objects from the DB; otherwise all records will exist twice in the tables.

This can be done by using the SQL script provided in <PATH>/DBArchives/dropUserObjects.sql.

A full description of the use (and their options) of the exp and imp software utilities can be found in annexes [S‑Exp73] and [S‑imp73].

· we modify the values of the "FORM_APP" table :

· menu MS-Windows "Database Management" ("Oracle basis" ("SQL Plus", the connection is made on slrfs@devdb
· update user_form_app set appowner='SLRFS';

(Note: since here the export account (slrfs@accdb) and the import one (slrfs@devdb) have both the same account name, this operation is in fact not necessary here.)

· insert into form_app select * from user_form_app;

· drop table user_form_app;

· commit;

3.3.2. The forms and SQL scripts

We then make an ftp-copy, to the PC NICE network, of all the forms and SQL script files: they can be found in the <PATH>/axldb folder.

3.4. Upgrading the forms

The second step was to upgrade the v3.0 ORACLE forms to v5.0 ones. This is a two step process, first a conversion from v3.0 to v4.5 and then from v4.5 to v5.0:

· we begin by making a copy of all the v3.0 forms source files (<PATH>/axldb/FORMS/ *.inp) onto our local hard disk; indeed the tool we shall be using does not seem to handle well the network drive letters!

In the following steps, we use C:\Temp\Forms\ as the aforementioned sub-directory on our local hard disk.

· we upgrade the forms source files from v3.0 to v4.5:

· menu MS-Windows "Start" ("Run…" ("command"

· > Z:

· > cd Z:\P32\ORAWIN95.OLD\BIN

· > F45gen32

You can find on [S-f45gen] a screen copy of the window allowing the user to set this 3.0(4.5 forms upgrade tool.

Note that in 3.0 forms, the "*.inp" and "*.frm" files are respectively the source and binary files, whereas in 4.5 and 5.0 they are respectively called "*.fmb" and "*.fmx".

· upgrade the forms source files from v4.5 to v5.0:

· menu MS-Windows "Start" ("Run…" ("command"

· > Z:

· > cd Z:\P32\ORAWIN95.OLD\BIN

· > F50gen32

You can find on [S-f50gen] a copy of the window allowing user to set this 4.5(5.0 forms upgrade tool.

Finally, these resulting v5.0 "*.fmb" and "*.fmx" files are stored into the <PATH>/nice/forms/ sub-directory, where they can be inspected.

You can launch them by double clicking the "*.fmx" 5.0 binary forms files, and setting the DB-connect fields like showing on [S-DBConnect].

Note: For this to work, it is necessary under Windows'9x that the “Forms Runtime” filetype is associated with the f50run32.exe executable (for v5.0 forms). It sometimes is associated with f45run32.exe (for v4.5 forms) by NICE.

3.5. Retouching the forms

The upgrade from Forms3 to Forms5, like described above, is automatically done by an Oracle tool. Nevertheless, the produced forms have to be retouched: texts and graphical components (list, text field, radio buttons…) are laid out on the canvas in an approximate way, and are sometimes super-posed to each other.

3.6. Adding some functionality to the existing system

There were in fact two different functionalities to add to the existing system: first, we had to add a way for ordering both the targets and childeren of one node, and second, we added the possibility to consider a "target selection code" for each node, which indicates whether or not this node is in an inclusive or exclusive mode (either selects as many targets as one wants, or, selects 'n out of all'; deselecting the firstly selected target when target 'n+1' is selected).

To implement this, we have respectively:

· to modify the skeleton of the database; adding a supplementary column in the appropriate table

· to modify the forms in order to give the user a way to enter this new data

· to modify the SQL scripts: for the first functionality these scripts themselves have to order the data according the added parameter, and for the second functionality the scripts have to produce a new column into the MMI generated files.

We shall now explain in detail these three parts.

3.6.1. The database

You can find in the folder <PATH>/scripts/ the various SQL scripts that allow modification of the database tables (adding display_order and target_selection_code columns) as well as their initialization.

· display_order: two columns were added in the TARGET and NODE_CHILD_CONN tables, which deal respectively with the node's targets order and the node's children order. These columns are created of type NUMBER(3, 1) and DEFAULT 0.

Note that these columns can take numbers with one digit after the decimal point. This feature allows the user to insert (max. 9) rows between existing ones. Once the values inserted in the table, this column will be updated (such that its values will be of integer type again) and the records reordered in an ascending way according to the value of this order column.

Please note that previously, the record order in the FLAT_nnn tables was created alphabetically according to the collumn MMI_DESCR (table TARGET) and numerically according to the collumns CAP_VAL_FOR_USING, A_X_NODE_NAME_2 (table NODE_CHILD_CONN). The newly added column was therefore set up with the default display_order value following the order given by these two sorts.

(alteration's script: alterNode_Child_Conn.sql and alterTarget.sql files

(set up's scripts: setNodeChildConnDisplayOrders.sql and setTargetDisplayOrders.sql files

· target_selection_code: this just consists of adding a new column into the NODE table; the alteration script can be found in the alterNode.sql file.
3.6.2. The forms

Adding new columns to the database tables supposes giving to the user the possibility of settting its values. This implies adding extra graphical components to the existing forms. To this end we use the ORACLE tool Designer/ 2000 from: menu MS-Windows "Database Management" ("Developer (New)" ("Form Builder".

· First we add, for each added column, a TextItem component in the form-layout-design mode to the node form (in pages 1, 3 and 4).

· Second, for the display_order columns (for both the TARGET and NODE_FILIATION data blocks), we setup three triggers, trapping when the user respectively creates a new record, deletes or updates it:

(
trigger WHEN-CREATE-RECORD. Its purpose is setting the display_order component with the index of the currently inserted record

(
triggers POST-INSERT, POST-DELETE and POST-UPDATE. Their purposes are sorting the various records according the display_order columns, and then updating the display_order value such that it represents consecutive integer numbers from 0 upwards.

· Third, the target_selection_code column (NODE data block). To this TextItem is only attached one trigger: WHEN-VALIDATE-ITEM, which has to check whether or not the inserted value is valid (if it is a number in the range from 0 to <TARGET_NUMBER>-1).

Another requirement was adding a possible list of values for this graphical component (that means, when user pressed the F9 key, a popup dialog window appears giving the user the possibility to select one number from the list.

In order to do this, a LOV (List Of Values) and record-group were added and attached to this graphical component; the LOV represents the popup window whereas the record-group gives the SQL SELECT order used for filling the LOV. Note that, since Oracle-forms only gives us the possibility to fill a LOV with an SQL order (not a PL-SQL one), we have to do this indirectly by creating a table containing numbers from 0 to 100 and then do the SELECT order as: "select val from integers where val<(select count(*) from target where <sys_name, node_name)"...
3.6.3. The MMI-SQL scripts

Once this new information (display_order for both the node's targets and children, and target_selection_code) was added, we had to deal with the MMI's (bulles.exec) SQL extraction scripts:

· For the display_order columns, this consisted of modifying the ORDER clause of the SELECT orders; in the files <PATH>/FLAT_TABLES/nodeTable.sql and <PATH>/FLAT_TABLES/targetTable.sql.

· For the target_selection_code, this consisted of producing a new column in the flat tables used during the creation of configuration files for the SPS RF Control System and in the configuration files for the MMI itself.

The corresponding SQL scripts to be modified were resp. <PATH>/FLAT_TABLES/nodeTable.sql and <PATH>/MMI_FILES/nodeFile.sql as well.

Note that the inclusion of targetSelectionCode column in the MMI configurationfile <RF_System_Name>.node required the modification of the readGraph.c C code module as well. In a later stage, after a further modification of the MMI C code, this value will be used as the intended target selection criterion ('exclusive: one out of all', 'inclusive: n out of max.', 'inclusive: n out of all'); currently it will only be read and target selection be done according to the ancient 'inclusive: n out of all' criterion.

4. The Executer Database Management System

Like explained in part 2: The ‘plan de campagne’, the second aim of this project is to create a system for the automatic generation of the configuration files that are required by the Executer process of the SPS RF Control System. This database manager software package consists of a Graphical User Interface (GUI) used for the capture of data, (Java) code for insertion and inspection of data into/from the database and a set of SQL scripts that can be launched from either the GUI or, independently, via an MS-DOS batch file to start the generation of the Executer configurationfiles.

First, we shall present the specification of the eight required configuration files. Then the layout of the software in terms of the succession of data-input windows will be discussed.

As this system will be constructed using both Java and Oracle technologies, we shall present in the third and fourth sub-sections respectively the designs of the object model (on which operates the GUI) and that of the Oracle relational database (where the user entered data will be stored and retrieved).

Finally is presented how to start and use this Executer database management system.

4.1. Specification

In file <PATH>/ref/Exec_ins.txt is a somewhat outdated, but yet generally valid description of the constituents that make together an RF PCA Executer. It should be noted that the terminology 'Object' and 'Class' in this overview is specific to the Executer and has only a loose connection to what currently is understood by these terms.

In section 6.4: RF Executer configuration files a description can be found of the various required file types.

There are in fact 8 types of configuration files, which can be regrouped into 4 categories according the object types of which they make a part of. In such terms the Executer configuration files are either :

· for an RF system (example: Synchro_Diagnostic)

· for a table object type (ex: BOOT_DB)

· for a data object type (ex: LF_0010)

· for a routine objet type (ex: IGDB_LL0)

Note that the generation of Executer configuration files will be done for one RF System at a time: the user first selects an RF System and then asks for the generation of the configuration files corresponding to this system. The configuration files will be generated in a sub directory depending on this RF System name; such that, for example, the two files globally attached to an RF System can have the same name whatever the system. This is not a problem as two different RF Systems will have there generated files in two different filesystem paths.

4.1.1. Global system files

This category of required files regroups in fact two types, which are respectively presented into part, and in 6.4: RF Executer configuration files '[F-SysProtoDef]' and '[F-SysTablInit]'; first type is the prototype definition of the include file and the second is the table initializer for this include file.

Prototype definition system file

PrototypeDefinitionSystemFile
("/* File: objs_nb.ora E. Bracke "

 + creationfiledate
 + " This text file is generated […]

 Creation MUTAD: "

 + VALUEMUTAD

 + "#define
N_ROUT
"

 + (
 + "#define
N_TABL
"

 + (
 + "#define
N_DATA
"

 + (
 + "#define
N_FREE
"

 + (
 + ROUTINEDEFINITION*

Where:

creationfiledate
(creation date file in terms of <month YYYY>

VALUEMUTAD
(value mutad in terms of <YYYYMMDDHHMISS>

ROUTINEDEFINITION
("extern CMND_n
"

 + (
 + "\n;"
(, (and (are respectively the number of routines, tables and data for all Executers of an RF System

(is a free field giving the number of reserved free slots in the command library of the Executers

(are the various names of all the routine objects building the Executers of this RF System.

4.1.1.1. Table initializer system file

Tableinitializersystemfile
("/* File: objs_ti.ora E. Bracke "

 + creationfiledate
 + " This text file is generated […]

 Creation MUTAD: "

 + VALUEMUTAD

 + "*/

 /* Routine type objects:\n\n"

 + ROUTINETYPEOBJECT*

 + "\n/* Table type objects:\n\n"

 + TABLETYPEOBJECT*

 + "\n/* Data type objects:\n\n"

 + DATATYPEOBJECT*

Where:

creationfiledate
(creation date file in terms of <month YYYY>

VALUEMUTAD
(value mutad in terms of <YYYYMMDDHHMISS>

ROUTINETYPEOBJECT ("{
\"" + (+ "\",
" + (+ ",
&" + (+ ",
" + (
 + ",
O_LOADED
},\n"
TABLETYPEOBJECT ("{
\"" + (+ "\",
NO_C,
NULL,
" + (

+ ",
FL_INIT
},\n"

DATATYPEOBJECT ("{
\"" + (+ "\",
NO_C,
NULL,
" + (

+ ",
FL_INIT
},\n"

(, (, (and (are respectively the names of the routines, their class, the name of the corresponding C source file and the number of times that the various tables of this RF System incorporate this routine

(and (are respectively the names of the tables and the number of times that the various other tables of this RF System incorporate this table

(and (are respectively the names of the data and the number of times that the various tables of this RF System incorporate this data

4.1.2. Table object type files

An example of such a type could be found in part 6.4: RF Executer configuration files '[F-Table]'.

Tableobjecttypefile
("/* File: "

 + (
 + "

E. Bracke "

 + creationfiledate
 + " This text file contains the definition […]

 Creation MUTAD: "

 + VALUEMUTAD

 + "CMND_NT:
"

 + (
 + "D_OBJS:
"

 + (
 + "SAA_M:
"

 + (
 + [EXECNALL |EXECN*]

 + "*/"

Where:

creationfiledate
(creation date file in terms of <month YYYY>

VALUEMUTAD
(value mutad in terms of <YYYYMMDDHHMISS>

EXECNALL

("\nEXEC_N:
ALL"

 + LINKUPATH

 + SEQEL*

EXECN

("\nEXEC_N:
"

 + (

 + LINKUPATH

 + SEQEL

LINKUPATH

("LINKS:
"

 + (

 + "U_PATH:
YES"

SEQEL

([SEQELTABLE

 | SEQELDATA

 | SEQELROUTINEWITHOUTDB

 | SEQELROUTINEWITHDB]

SEQELTABLE

("SEQ_EL:
"

 + (

 + "C_A:
"

 + CLASSATTRIBUTE

 + "F_NAME:
"

 + (
 + "RT_NAME:
"

 + (
SEQELDATA

(

SEQELROUTINEWITHOUTDB
(SEQELTABLE

 + "CLA_A:
"

 + (
SEQELROUTINEWITHDB
(SEQELROUTINEWITHOUTDB

 + "RDB_TYPE:
B"

 + "RDB_FILE:
"

 + (
CLASSATTRIBUTE

(['N' | 'F' | 'S' | 'E' | 'I' | 'C' | 'U' | 'A' | 'D']

(and (are free fields which represent respectively the physical name of the configuration file (f_name) and the Runtime Name (rt_name) of the table that it represents

(is the possible index of the sequence element which contains a data object; if this figure is different from 0, then the sequence element at the index specified by this number will be of class DATA (and the class attribute C_A will thus be 'D')

(is the number of sequence elements minus 1 of the current table; note that this number is the same for all the Executers of a same RF System that use the table

(is the name of the Executer that will use this sequence table; if its value is the string ALL, then only one sequence is defined in the configuration file and all the Executers incorporating this sequence use this definition file

(represents the number of times the current table is referenced in other tables on one of their sequence steps

(is index of this sequence element (a step) in the table

(and (are respectively the file name and the runtime name of the object of the sequence element; both are free fields

(is a free field representing the command level attribute

(is the name of the file of the with database referenced routine
Note:
the CLASSATTRIBUTE field is a completely free field among the list {'N', 'F', 'S', 'E', 'I', 'C', 'U', 'A', 'D'}. It represents in an unique way the class of the object, and the table in part 6.4: RF Executer configuration files '[F-CORRESP]' gives the correspondence class attribute (class
4.1.3. Data object type files

Such a type file can be found in part 6.4: RF Executer configuration files '[F-Data]'.
4.1.4. Routine objects type files

This category of required files regroups in fact four types, which are respectively presented in part 6.4: RF Executer configuration files '[F- RoutIndirec]', '[F- RoutConfigFBACS]', '[F-RoutConfigOTHER]' and '[F‑RoutInclude]'.

The first type is the routine indirection file, the second one the routine configuration file for an Executer fieldbus access routine object (FBACS), the third one the routine configuration file for all routine objects other than the fieldbus access one, and the fourth one is the generic routine include file. The drawing below shows the type of file to generate according the Executer routine types.

4.1.4.1. Routine indirection type file

RoutineindirectiontypefilE
("/* File: "

 + (
 + "

E. Bracke "

 + creationfiledate
 + " This text file contains the definition […]

 Creation MUTAD: "

 + VALUEMUTAD

 + "CMND_RT:
"

 + (
 + EXECN*

 + "*/"

Where:

creationfiledate
(creation date file in terms of <month YYYY>

VALUEMUTAD
(value mutad in terms of <YYYYMMDDHHMISS>

EXECN

("\nCMND_NT:
"

 + (
 + "\nEXEC_N:
 "

 + (

 + "LAB_0:
"

 + (
(and (are free fields which represent respectively the physical name of this indirection file (f_name) and the Runtime Name (rt_name) of the routine object for which this indirection file is intended

(is the table name which will reference this routine with DB

(is the Executer name (primary key on all the Executers of a same system)

(is the name of the configuration file to generate (see 4.1.4.2: Routine configuration file for FIELDBUS access file and 4.1.4.3: Routine configuration file for a non FIELDBUS access file)
4.1.4.2. Routine configuration file for FIELDBUS access file

RoutineCONFIGURATionFORFIPBUSACCESStypefilE
("/* File: "

 + (
 + "

E. Bracke "

 + creationfiledate
 + " This text file contains the definition […]

 Creation MUTAD: "

 + VALUEMUTAD

 + "CMND_RT:
"

 + (
 + "CMND_NT:
"

 + (
 + "EXEC_N:
"

 + (
 + "FB_TYPE:
M_1553B"

 + "FB_RACS:
"

 + (
 + FBDINFORMATION
 + "*/"

Where:

creationfiledate
(creation date file in terms of <month YYYY>

VALUEMUTAD
(value mutad in terms of <YYYYMMDDHHMISS>

FBDINFORMATION
(coming fromslrfs@accdb with correspondance on the CMND_NT key (found in form RT_NAME). It's dependant from the routine with DB ; information is to take from like generated by /EXEC_FILES/fbd_file.sql
(and (are free fields which represent respectively the physical name of the configuration file (f_name)
and the runtime name (rt_name) of the routine with database for which we are currently generate
this file

(is the rt_ name of the table

(is the Executer name

(is a free field depending on the system
4.1.4.3. Routine configuration file for a non FIELDBUS access file

RoutineCONFIGURATionFORANONFIPBUSACCESStypefilE
("/* File: "

 + (
 + "

E. Bracke "

 + creationfiledate
 + " This text file contains the definition […]

 Creation MUTAD: "

 + VALUEMUTAD

 + "CMND_RT:
"

 + (
 + "CMND_NT:
"

 + (
 + "EXEC_N:
"

 + (
 + SUPPINFORMATION

 + "*/"

Where:

creationfiledate
(creation date file in terms of <month YYYY>

VALUEMUTAD
(value mutad in terms of <YYYYMMDDHHMISS>

SUPPINFORMATION
((

 + ":
"

 + (
 + "
"

 + (
(and (are free fields which represent respectively the physical name of the configuration file (f_name)
and the runtime name (rt_name) of the routine with database for which we are currently generate
this file

(is the rt_ name of the table

(is the Executer name

(, (and (are three free fields depending on the configuration file of a routine with db
4.1.4.4. Routine include file

RoutineINCLUDEtypefilE
("/* File: "

 + (
 + "

E. Bracke "

 + creationfiledate

 + (
 + " Modification history:

 Creation MUTAD: "

 + VALUEMUTAD

 + (

 + "*/"

Where:

creationfiledate
(creation date file in terms of <month YYYY>

VALUEMUTAD
(value mutad in terms of <YYYYMMDDHHMISS>

(, (and (are free fields which represent respectively the file name of the include file (f_name), its descriptive and its body

4.2. Software layout

4.3. Object model design

[image: image1.png]SSystem
Yname : String
systoms &inputPath - String oaters g SEX:C“W
&outPutPath : String $E><ECUTEFge S i
* |&n_free - int & 4 xecuter
&pca - String
0Object
&rt_name : String
&f_name : String tables data [outines
RFPCAExecuterDBManager &
_
S
~ 7
& S
- Va
¥ —~ 2
//
RoutineCore Thable I |
rautineCores SF.CATIPE char=F @$1_CA_TYPE char=T _
s % C_CA_TYPE : char = 'C
% S_CA_TYPE : char='S H
#$ E_CA_TYPE : char= E' 1 $U_CA_TYPE: char = U
— ¢$ A_CA_TYPE : char = 'A'
int

SequenceElement

£ tersS
e L.

sequenceElementObject

<<lnt;

erfaces>
SequenceElementObject

®setSequenceElementObject()

SgetOtject()

m
&uPath - String
& baConfigurationFileName

i

ConfiguratiorFileBodyltem

[DetaseauenceEiement | [RoutineSequenceElement
e ———

=)

&l

&abel - Stng
Bpwalues - Vector

| OOy eSS SutineWithDB SequenceElement |

Routine

String

RoutineWithDBCore

&rcb_file

String
&isAFBACcessRoutine : boolean = fase

RoutineWithincludeFileCore
&includeFileName : String
B3

RoutineWithDBW thincludeFileCore
@ cb_file : String

routineCore

RoutineWithDB

FBAccessRoutine
&fb_racs : String
e |

RoutineWithinludeFile
&includeFileDescr : String
&includeFileBody : String

RoutineWithDBWithincludeFile

1

4.4. Relational database model design

An SQL script was written for the creation of the Oracle database tables (the database skeleton) where the RF Executer static data gathered by our database manager will be stored.

It can be found in: <PATH>/java/ref/relmodel/createOrModifyAllTables.sql

On the following page a representation of these tables is shown.

4.5. Executer Database Management System use

The SPS RF Executer Database Manager is conceived in Java software technology. All the necessary source-, bytecode-, and batch files can be found in the <PATH>/java/executer/ package sub directory tree.

In the executer folder, a second sub directory executer contains the Java source code files of the package, the sub directory class/executer contains the system's bytecode files, and in the script sub directory are stored the SQL and MS-DOS batch scripts used for the generation of the RF Executer configuration files.

Now we shall discuss how to use this software package.

1. One begins by launching the Java Executer Database Manager: <PATH>/java/executer/rune.bat

2. A connection to the database is established; for testing it is now the rfdev/rfdev@rfdb account that is used. (Note: the final operational account will later be: 'spsrf' on 'accdb'. E. B.)

3. Once the database manager runs, the File menu allows to create a new, save information into or load from a hardisk file. This can be useful for example to make local archives.

4. You can select one system from the Systems list (double click), and then asking for initializing its executers, routines, data or tables.

Initialization of the executers, data and tables is done by using information provided from the hardisk files <RF_System_name>.cmd and <RF_System_name>.fbd found in the path specified by the field 'input path. (For example for the SWC_200_Low_level RF System, this would be the q:\rf\sps\erik\db_proj\SYS_GEN\RF_PCA\SYSTEMS\RFSCF1\SWC_200_Low_level\PATH_II directory).
Initialization of the routines is done with the default routines , available on the first window of the software package.(All possible routines from which RF Executers can be constructed; hardcoded in the database manager)

5. You can also modify the property of a system, just by double-clicking on it (or asking for the Properties menu opened with the right mouse button): add new tables, modify their f_name, etc.

6. Once your system is correctly set, you save your modification into the database (CTRL+I)

7. You can then ask for creating the configuration files. This is made by launching the: <PATH>/java/executer/scripts/run.bat batch file. Note that your configuration files will be written into the directory defined in the "output path" property of the system (and modifiable from the Java software)

5. Epilogue

Although the 'Plan de Campagne' has not fully been put into reality (only the last three points remain to be done), Vincent did an impressive job in coming this far in such a short time available. I should like thanking him for the very fruitful discussions we had on the implementation of this database project; especially his expertise in the 'object oriented approach' towards database management and software design was very much appreciated. We certainly are 'on track' for the completion of our ambitions...

Erik Bracke SL/LRF-co

CERN, January 31st, 2000

6. References

6.1. People

· [P-Nilo] DB administrator: Nilo SEGURA CHINCHILLA Nilo.Segura.Chinchilla@cern.ch
· [P-Phil] Designer/implementor/member of the SPS RF Control System development team:
 Philippe BAUDRENGHIEN Philippe.Baudrenghien@cern.ch
· This paper's principal author and software implementor of this project (currently working for Broadcom Eireann Research Ltd.; Ireland):

 Vincent ALEXANDRE vae@broadcom.ie
6.2. Manuals and tutorials

· [M-EXP/IMP] export and import oracle-unix facilities:

 http://www.heinz.cmu.edu/project/dbms/technical/importINS.html
· [M-FORMS1] SQL*Forms, Designer reference, version 3.0

· [M-TRAIN] Oracle Training Services, course notes, edition 2.0

· [M-FORMS2] "ORACLE: forms developer's companion" by Yang Andrew, Adams Brian,

Muench Steve and 1993

6.3. Settings screen captures

· [S-f45gen]

· [S-f50gen]

· [S-DBConnect]

[image: image2.jpg]

· [S-Exp73]

Microsoft(R) Windows 95

 (C)Copyright Microsoft Corp 1981-1995.

C:\W95>cd c:\temp

C:\TEMP>exp73

Export: Release 7.3.4.0.0 - Production on Thu Oct 07 11:41:25 1999

Copyright (c) Oracle Corporation 1979, 1996. All rights reserved.

Username: slrfs@accdb

Password:

Connected to: Oracle7 Server Release 7.3.4.4.0 - Production

With the distributed, replication, parallel query and Parallel Server options

PL/SQL Release 2.3.4.4.0 - Production

Enter array fetch buffer size: 4096 >

Export file: EXPDAT.DMP >

(2)U(sers), or (3)T(ables): (2)U >

Export grants (yes/no): yes >

Export table data (yes/no): yes >

Compress extents (yes/no): yes >

Export done in WE8ISO8859P1 character set

About to export SLRFS's objects ...

. exporting snapshots

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children

. exporting database links

. exporting sequence numbers

. exporting cluster definitions

. about to export SLRFS's tables via Conventional Path ...

. . exporting table ACTION 139 rows exported

[...]

. . exporting table WR_LIST 63 rows exported

. exporting synonyms

. exporting views

. exporting stored procedures

. exporting referential integrity constraints

. exporting triggers

. exporting posttables actions

Export terminated successfully without warnings.

· [S-Imp73]

Microsoft(R) Windows 95

 (C)Copyright Microsoft Corp 1981-1995.

C:\W95>cd c:\temp

C:\TEMP>imp73

Import: Release 7.3.4.0.0 - Production on Thu Oct 07 11:49:34 1999

Copyright (c) Oracle Corporation 1979, 1996. All rights reserved.

Username: slrfs@devdb

Password:

Connected to: Oracle7 Server Release 7.3.4.3.0 - Production

With the distributed, replication and parallel query options

PL/SQL Release 2.3.4.3.0 - Production

Import file: EXPDAT.DMP >

Enter insert buffer size (minimum is 4096) 30720>

Export file created by EXPORT:V07.03.04 via conventional path

List contents of import file only (yes/no): no >

Ignore create error due to object existence (yes/no): no >

Import grants (yes/no): yes >

Import table data (yes/no): yes >

Import entire export file (yes/no): no >

Username: slrfs

Enter table names. Null list means all tables for user

Enter table name or . if done:

. importing SLRFS's objects into SLRFS

. . importing table "ACTION" 139 rows imported

[...]

. .importing table WR_LIST 63 rows exported

Import terminated successfully without warnings.

6.4. RF Executer configuration files

· [F-CORRESP]

	Class attribute
	Class
	Table (T)

Data (D)

Routine (R)

	N
	 NO_C
	 T, D and R

	F
	FIRSTLAST_C
	R

	S
	SWITCH_C
	R

	E
	EXEC_C
	R

	I
	INIT_C
	T

	C
	COMPLEX_C
	T

	U
	SURV_C
	T

	A
	ABORT_C
	T

	D
	DATA_C
	D

· [F-SysProtoDef]

· [F-SysTablInit]

· [F-Table]

· [F-Data]

· [F-RoutIndirec]

· [F-RoutConfigFBACS]

· [F-RoutConfigOTHER]

· [F-RoutInclude]

<PATH>=//Srv2_home/div_sl/rf/sps/Erik/DB_Proj

<THIS DOCUMENT PATH >=	<PATH>/ref/report.doc

<PATH>/ref/images/*.*

05/19/1999

-

�

Author:	Vincent.Alexandre@cern.ch

	 Erich.Bracke@cern.ch

� EMBED MS_ClipArt_Gallery ���

accdb

database

RoutConfigFBACS

RoutIndirec

sqlplus from ~/FLAT_TABLES

sqlplus from e.g. ~/MMI_FILES

Ex:

start one_system_tables supra_3582_low_level

Routine

Ex:

start all_systems_file supra_3582_low_level

configuration

files

3

2

1

Figure � SEQ Figure * ARABIC �0�: Erich's DB_Proj environment

Z:\P32\ORAWIN95\BIN>exp73

Export: Release 7.3.4.0.0 - Production on Thu May 20 13:28:10 1999

Copyright (c) Oracle Corporation 1979, 1996. All rights reserved.

Username:Copyright (c) Oracle Corporation 1979, 1996. All rights reserved.

Username: � HYPERLINK mailto:slrfs@accdb ��slrfs@accdb�

Password:

Connected to: Oracle7 Server Release 7.3.4.4.0 - Production

With the distributed, replication, parallel query and Parallel Server options

PL/SQL Release 2.3.4.4.0 - Production

Enter array fetch buffer size: 4096 >

Export file: EXPDAT.DMP > Q:\RF\SPS\ERIK\DB_Proj\slrfs.dmp

Z:\P32\ORAWIN95\BIN>imp73

import: Release 7.3.4.0.0 - Production on Thu May 20 13:28:10 1999

Copyright (c) Oracle Corporation 1979, 1996. All rights reserved.

Username:Copyright (c) Oracle Corporation 1979, 1996. All rights reserved.

Username: � HYPERLINK mailto:slrfs@devdb ��slrfs@devdb�

Password:

Connected to: Oracle7 Server Release 7.3.4.3.0 - Production

With the distributed, replication and parallel query options

PL/SQL Release 2.3.4.3.0 - Production

Import file: EXPDAT.DMP > Q:\RF\SPS\ERIK\DB_Proj\slrfs.dmp

� INCLUDEPICTURE images\\F45GEN32.JPG \d * MERGEFORMAT ���

			 With DB ?	With include file ?	FBACS access ?		To generate type file

� INCLUDEPICTURE images\\F50GEN32.JPG \d * MERGEFORMAT ���

� EMBED MS_ClipArt_Gallery ���user

Sqlforms

from ~/FORMS/

 		 No						 (

 No

		 Yes						RoutInclude

 No			

 No

Yes							

 Yes 			

								

		 						RoutConfigOTHER

 Yes 					RoutInclude

RoutIndirec

RoutConfigOTHER

RoutIndirec

Version: 13/03/02.

Vincent Alexandre

Erik Bracke

42
Version: 13/03/02.
43-21
Vincent Alexandre

Erik Bracke

_988719433

_1012398101.doc
[image: image1.png]SSystem
Yname : String
systoms &inputPath - String oaters g SEX:C“W
&outPutPath : String $E><ECUTEFge S i
* |&n_free - int & 4 xecuter
&pca - String
0Object
&rt_name : String
&f_name : String tables data [outines
RFPCAExecuterDBManager &
_
S
~ 7
& S
- Va
¥ —~ 2
//
RoutineCore Thable I |
rautineCores SF.CATIPE char=F @$1_CA_TYPE char=T _
s % C_CA_TYPE : char = 'C
% S_CA_TYPE : char='S H
#$ E_CA_TYPE : char= E' 1 $U_CA_TYPE: char = U
— ¢$ A_CA_TYPE : char = 'A'
int

SequenceElement

£ tersS
e L.

sequenceElementObject

<<lnt;

erfaces>
SequenceElementObject

®setSequenceElementObject()

SgetOtject()

m
&uPath - String
& baConfigurationFileName

i

ConfiguratiorFileBodyltem

[DetaseauenceEiement | [RoutineSequenceElement
e ———

=)

&l

&abel - Stng
Bpwalues - Vector

| OOy eSS SutineWithDB SequenceElement |

Routine

String

RoutineWithDBCore

&rcb_file

String
&isAFBACcessRoutine : boolean = fase

RoutineWithincludeFileCore
&includeFileName : String
B3

RoutineWithDBW thincludeFileCore
@ cb_file : String

routineCore

RoutineWithDB

FBAccessRoutine
&fb_racs : String
e |

RoutineWithinludeFile
&includeFileDescr : String
&includeFileBody : String

RoutineWithDBWithincludeFile

1

_988702602

